LaGuardia Community College City University of New York Mathematics Department – Engineering Science

MAE101: Engineering Lab 1

3 Lab hours; 1 credit **Prerequisite:** MAT200 **Course Description:**

This is the first of two engineering laboratory courses. Students meet once a week and are introduced to engineering design through hands-on laboratory work using computer applications. They are introduced to programming a robot to perform a specific task and to basic structural analysis. Additionally, they work in groups on design projects and are expected to use computers for documentation, data analysis, and for maneuvering robots.

Textbook: Freshman Design Manual I, by Ghosn, Benenson, Ahn, Ganatos. **Evaluations:** Lab Reports 70%

Presentations 200/
Presentations 30%
TOPICS
BRIDGE DESIGN MODULE: Behavior of Materials and Structural Members
Benavior of Materials and Structural Members
Concepts of Structural Safety and Equilibrium
Analysis of Trusses using SAP2000
Application of SAP2000: Analysis of a Warren Truss Bridge
Design of a Truss Bridge using SAP2000
Building a Model of the Truss Bridge
Presentation of the Bridge Design Project
ROBOT DESIGN MODULE:
Introduction to Robotics and Kinematics
Work Envelope of a Robot
Understanding the Robot Arm System
Programming the Robotic Arm
Programming the Robotic Arm to Perform a Task
Robot Design: Implementation and Testing of Programs
Presentation of the Robot Design Project
DIGITAL CLOCK DESIGN MODULE
Introduction to Binary Digital Electronics
Number Systems and Binary Codes
Understanding a Binary Counter
Designing a Binary to Seven-Segment Decoder
Adding a Seven-Segment Display
Modulo Counters
Digital Clock Design
Presentation of the Digital Clock Design Project